Naloxone's Pentapeptide Binding Site on Filamin A Blocks Mu Opioid Receptor–Gs Coupling and CREB Activation of Acute Morphine
نویسندگان
چکیده
Chronic morphine causes the mu opioid receptor (MOR) to switch its coupling from Gi/o to Gs, resulting in excitatory signaling via both Galphas and its Gbetagamma dimer. Ultra-low-dose naloxone (NLX) prevents this switch and attenuates opioid tolerance and dependence. This protective effect is mediated via a high-affinity interaction of NLX to a pentapeptide region in c-terminal filamin A (FLNA), a scaffolding protein interacting with MOR. In organotypic striatal slice cultures, we now show that acute morphine induces a dose-dependent Go-to-Gs coupling switch at 5 and 15 min that resolves by 1 hr. The acute Gs coupling induced by 100 microM morphine was completely prevented by co-treatment with 100 pM NLX, (+)NLX, or naltrexone (NTX), or their pentapeptide binding site (FLNA(2561-2565)), which we show can act as a decoy for MOR or bind to FLNA itself. All of these co-treatments presumably prevent the MOR-FLNA interaction. Since ultra-low-dose NTX also attenuates the addictive properties of opioids, we assessed striatal cAMP production and CREB phosphorylation at S(133). Correlating with the Gs coupling, acute morphine induced elevated cAMP levels and a several-fold increase in pS(133)CREB that were also completely blocked by NLX, NTX or the FLNA pentapeptide. We propose that acute, robust stimulation of MOR causes an interaction with FLNA that allows an initially transient MOR-Gs coupling, which recovers with receptor recycling but persists when MOR stimulation is repeated or prolonged. The complete prevention of this acute, morphine-induced MOR-Gs coupling by 100 pM NLX/NTX or 10 microM pentapeptide segment of FLNA further elucidates both MOR signaling and the mechanism of action of ultra-low-dose NLX or NTX in attenuating opioid tolerance, dependence and addictive potential.
منابع مشابه
High-Affinity Naloxone Binding to Filamin A Prevents Mu Opioid Receptor–Gs Coupling Underlying Opioid Tolerance and Dependence
Ultra-low-dose opioid antagonists enhance opioid analgesia and reduce analgesic tolerance and dependence by preventing a G protein coupling switch (Gi/o to Gs) by the mu opioid receptor (MOR), although the binding site of such ultra-low-dose opioid antagonists was previously unknown. Here we show that with approximately 200-fold higher affinity than for the mu opioid receptor, naloxone binds a ...
متن کاملPTI-609: a novel analgesic that binds filamin A to control opioid signaling.
Binding a critical pentapeptide region on the scaffolding protein filamin A regulates signaling of mu opioid receptors (MORs) so that their activation should not result in the opioid tolerance, dependence and addiction associated with current opioid painkillers. Additionally, we show that compounds that bind this site on filamin A reduce release of inflammatory cytokines. PTI-609 is a new chemi...
متن کاملRole of μ-opioid receptor in parafascicular nucleus of thalamus on morphine-induced antinociception in a rat model of acute trigeminal pain
The parafascicular nucleus (PFN) of thalamus, as a supraspinal structure, has an important role in processing of nociceptive information. In addition, μ-opioid receptor contributes to supraspinal modulation of nociception. In the present study, the effects of microinjection of naloxone (a non-specific opioid-receptor antagonist) and naloxonazine (a specific μ-opioid receptor antagonist) were in...
متن کاملChronic morphine treatment up-regulates mu opioid receptor binding in cells lacking filamin A.
We investigated the effects of morphine and other agonists on the human mu opioid receptor (MOP) expressed in M2 melanoma cells, lacking the actin cytoskeleton protein filamin A and in A7, a subclone of the M2 melanoma cells, stably transfected with filamin A cDNA. The results of binding experiments showed that after chronic morphine treatment (24 h) of A7 cells, MOP-binding sites were down-reg...
متن کاملmiR-33-5p Regulates CREB to Induce Morphine State-dependent Memory in Rats: Interaction with µ Opioid Receptor
The aim of the present study was to examine the hypothesis that miR-33-5p attenuates morphine state-dependent (StD) memory via the µ opioid receptor by regulating cyclic AMP response element-binding protein (CREB). The effects of post-training morphine and morphine StD memory and their interaction with pre-test naloxone were evaluated using a single-trial inhibitory avoidance paradigm. Then, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009